Accuracy of radioactive dating

Third, the radiometric ages agree, within analytical error, with the relative positions of the dated ash beds as determined by the geologic mapping and the fossil assemblages; that is, the ages get older from top to bottom as they should. Finally, the inferred age of the shocked quartz, as determined from the age of the melted feldspar in the Manson impact structure Meteorites, most of which are fragments of asteroids, are very interesting objects to study because they provide important evidence about the age, composition, and history of the early solar system.

There are many types of meteorites. Some are from primitive asteroids whose material is little modified since they formed from the early solar nebula. Others are from larger asteroids that got hot enough to melt and send lava flows to the surface. A few are even from the Moon and Mars. The most primitive type of meteorites are called chondrites, because they contain little spheres of olivine crystals known as chondrules.

Because of their importance, meteorites have been extensively dated radiometrically; the vast majority appear to be 4. Some meteorites, because of their mineralogy, can be dated by more than one radiometric dating technique, which provides scientists with a powerful check of the validity of the results. The results from three meteorites are shown in Table 1.

Many more, plus a discussion of the different types of meteorites and their origins, can be found in Dalrymple There are 3 important things to know about the ages in Table 1. The first is that each meteorite was dated by more than one laboratory — Allende by 2 laboratories, Guarena by 2 laboratories, and St Severin by four laboratories. This pretty much eliminates any significant laboratory biases or any major analytical mistakes. The second thing is that some of the results have been repeated using the same technique, which is another check against analytical errors. The third is that all three meteorites were dated by more than one method — two methods each for Allende and Guarena, and four methods for St Severin.

This is extremely powerful verification of the validity of both the theory and practice of radiometric dating. In the case of St Severin, for example, we have 4 different natural clocks actually 5, for the Pb-Pb method involves 2 different radioactive uranium isotopes , each running at a different rate and each using elements that respond to chemical and physical conditions in much different ways.

And yet, they all give the same result to within a few percent. Is this a remarkable coincidence?


  • Is Carbon-Dating Accurate? | Radiometric dating | Rate of Decay | Clock Reset | Closed System.
  • .
  • best dating app wp;
  • ActionBioscience - promoting bioscience literacy;

Scientists have concluded that it is not; it is instead a consequence of the fact that radiometric dating actually works and works quite well. Creationists who wants to dispute the conclusion that primitive meteorites, and therefore the solar system, are about 4. One of the most exciting and important scientific findings in decades was the discovery that a large asteroid, about 10 kilometers diameter, struck the earth at the end of the Cretaceous Period.

The collision threw many tons of debris into the atmosphere and possibly led to the extinction of the dinosaurs and many other life forms. The fallout from this enormous impact, including shocked quartz and high concentrations of the element iridium, has been found in sedimentary rocks at more than locations worldwide at the precise stratigraphic location of the Cretaceous-Tertiary K-T boundary Alvarez and Asaro ; Alvarez We now know that the impact site is located on the Yucatan Peninsula. Measuring the age of this impact event independently of the stratigraphic evidence is an obvious test for radiometric methods, and a number of scientists in laboratories around the world set to work.

In addition to shocked quartz grains and high concentrations of iridium, the K-T impact produced tektites, which are small glass spherules that form from rock that is instantaneously melted by a large impact. The K-T tektites were ejected into the atmosphere and deposited some distance away. Tektites are easily recognizable and form in no other way, so the discovery of a sedimentary bed the Beloc Formation in Haiti that contained tektites and that, from fossil evidence, coincided with the K-T boundary provided an obvious candidate for dating.

Scientists from the US Geological Survey were the first to obtain radiometric ages for the tektites and laboratories in Berkeley, Stanford, Canada, and France soon followed suit. The results from all of the laboratories were remarkably consistent with the measured ages ranging only from Similar tektites were also found in Mexico, and the Berkeley lab found that they were the same age as the Haiti tektites. The K-T boundary is recorded in numerous sedimentary beds around the world.

Numerous thin beds of volcanic ash occur within these coals just centimeters above the K-T boundary, and some of these ash beds contain minerals that can be dated radiometrically. Since both the ash beds and the tektites occur either at or very near the K-T boundary, as determined by diagnostic fossils, the tektites and the ash beds should be very nearly the same age, and they are Table 2. There are several important things to note about these results. First, the Cretaceous and Tertiary periods were defined by geologists in the early s.

The boundary between these periods the K-T boundary is marked by an abrupt change in fossils found in sedimentary rocks worldwide. Its exact location in the stratigraphic column at any locality has nothing to do with radiometric dating — it is located by careful study of the fossils and the rocks that contain them, and nothing more. Furthermore, the dating was done in 6 different laboratories and the materials were collected from 5 different locations in the Western Hemisphere.

And yet the results are the same within analytical error.

Search form

In the early afternoon of August 24, 79 CE, Mt Vesuvius erupted violently, sending hot ash flows speeding down its flanks. These flows buried and destroyed Pompeii and other nearby Roman cities. We know the exact day of this eruption because Pliny the Younger carefully recorded the event. They separated sanidine crystals from a sample of one of the ash flows. Incremental heating experiments on 12 samples of sanidine yielded 46 data points that resulted in an isochron age of 94 years. The actual age of the flow in was years. Is this just a coincidence? No — it is the result of extremely careful analyses using a technique that works.

This is not the only dating study to be done on an historic lava flow. Two extensive studies done more than 25 years ago involved analyzing the isotopic composition of argon in such flows to determine if the source of the argon was atmospheric, as must be assumed in K-Ar dating Dalrymple , 26 flows; Krummenacher , 19 flows. Note, however, that even an error of 0. In this short paper I have briefly described 4 examples of radiometric dating studies where there is both internal and independent evidence that the results have yielded valid ages for significant geologic events.

How reliable is geologic dating?

It is these studies, and the many more like them documented in the scientific literature, that the creationists need to address before they can discredit radiometric dating. Their odds of success are near zero.


  • sikh and muslim dating.
  • .
  • Accuracy of Fossils and Dating Methods.
  • .
  • best dating sites buzzfeed;

Even if against all odds they should succeed, it still would not prove that the Earth is young. Only when young-earth creationists produce convincing quantitative, scientific evidence that the earth is young will they be worth listening to on this important scientific matter. I thank Chris Stassen and 2 anonymous reviewers for their thoughtful comments, which led to important improvements in the manuscript. Excess argon within mineral concentrates from the new dacite lava dome at Mount St Helens volcano.

How old is the earth? A reply to scientific creationism. Awbrey F, Thwaites WM, editors. US Geological Survey Bulletin A sufficient reason for false Rb-Sr isochrons. We have also obtained a very similar age by measuring Pb isotopes in materials from earth. I should mention that the decay constants basically a value that indicates how fast a certain radioactive isotope will decay for some of these isotope systems were calculated by assuming that the age of the earth is 4.

1. Rate of Decay

The decay constants for most of these systems have been confirmed in other ways, adding strength to our argument for the age of the earth. Radiometric dating depends on the chemistry and ratios of different elements. It works like this:.

Take, for example, zircon, which is a mineral; its chemical formula is ZiSiO 4 , so there is one zirconium Zi for one silicon Si for four oxygen O. One of the elements that can stand in chemically for zircon is uranium. Uranium eventually decays into lead, and lead does not normally occur in zircon, except as the radioactive decay product of uranium. Therefore, by measuring the ratio of lead to uranium in a crystal of zircon, you can tell how much uranium there originally was in the crystal, which, combined with knowing the radioactive half-life of uranium, tells you how old the crystal is.

Obviously, if the substance you are measuring is contaminated, then all you know is the age since contamination, or worse, you don't know anything, because the contamination might be in the opposite direction - suppose, for example, you're looking at radio carbon carbon 14, which is produced in the atmosphere by cosmic rays, and which decays into nitrogen. Since you are exposed to the atmosphere and contain carbon, if you get oils from your skin onto an archeological artifact, then attempting to date it using radio carbon will fail because you are measuring the age of the oils on your skin, not the age of the artifact.

This is why crystals are good for radiometric dating: The oldest crystals on Earth that were formed on Earth are zircon crystals, and are approximately 4. Asteroids in the solar system have been clocked at 4. We assume that the Earth is probably as old as the asteroids, because we believe the solar system to have formed from a collapsing nebula, and that the Earth, being geologically active, has simply destroyed any older zircon crystals that would be its true age, but we can't really be certain. The building blocks that the Earth is made of, the asteroids are 4.

Radiometric dating

Based on astronomical models of how stars work, we also believe the Sun to be about 4. Radiometric dating is a widely accepted technique that measures the rate of decay of naturally occurring elements that have been incorporated into rocks and fossils. Every element is defined by the particular number of protons, neutrons, and electrons that make up it's atoms. Sometimes, the number of neutrons within the atom is off.

Navigation menu

These atoms, with an odd number of neutrons, are called isotopes. Because they do not have the ideal number of neutrons, the isotopes are unstable and over time they will convert into more stable atoms. Scientists can measure the ratio of the parent isotopes compared to the converted isotopes.